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Abstract

In many fields, due to the increasing number of automatic sensors and devices, there is an emerging
need to integrate georeferenced and temporal data into decision support tools. Geographic Information
Systems (GIS) and Geostatistics lack some functionalities for modelling and reasoning using georefer-
enced data. Soft computing techniques and software suited to these needs may be useful to implement
new functionalities and use them for modelling and decision making. This work presents an open source
framework designed for that purpose. It is based upon open source toolboxes, and its design is inspired by
the fuzzy software capabilities developed in FisPro for ordinary non-georeferenced data. Two real world
applications in Agronomy are included, and some perspectives are given to meet the challenge of using
soft computing for georeferenced data.
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1. Introduction

Management of complex systems cannot only rely
on a thorough mathematical modelling. Decision
support systems are necessary to assist the deci-
sion maker, and system design should benefit from
all the available knowledge, including expert know-
ledge and data.

In many application fields, for instance in Agro-
nomic and Environmental Sciences, the considered
data are often georeferenced and temporal data.
They come from measurements (satellite or aerial
images, embedded sensors e.g. yield, harvest com-

pounds, etc.), manual sampling (soil analyzes) or
may be given by experts (flood-risk area). There
is a need for aggregating heterotopic data of va-
rious kinds (expert, measurements), from different
sources, with various spatial resolutions, protocols
and assessments. Imprecision, partial truth, and un-
certainty are a recurring characteristic.

Much effort has been made to design dedicated
software for spatial data management, mainly Geo-
graphic Information Systems (GIS) used to handle
and display georeferenced data, and geostatistical
methods for data processing and estimation. Ne-
vertheless, there have been relatively few soft com-
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puting developments to address the specific charac-
teristics of georeferenced data. Even if some GIS
propose fuzzy methods, like the popular fuzzy clus-
tering algorithm, fuzzy k-means, these methods are
not designed specifically for georeferenced data.

Soft computing techniques, especially fuzzy
logic and fuzzy inference systems, proved to be
efficient to cope with imprecise data and uncer-
tainty attached to expert judgment and have al-
ready been used in Agronomic and Environmen-
tal Sciences1,2,3,4,5,6,7. Spatial data specificities are
likely to open novel research topics in soft comput-
ing. For instance, the notion of zone is not clearly
defined in GIS, it is often mistaken for a projec-
tion of a classification achieved in the attribute space
without considering geographic continuity. This
concept is central in spatial reasoning and essential
in decision making, particularly in these fields, As
in practice, decisions need to be applied to manage-
ment zones, satisfying geographical contiguity and
shape criteria. For realistic decision support, zones
must be defined with respect to the imprecision and
uncertainty of available data and knowledge.

This work presents the outline of a decision
support system framework for spatial data. It is
freely available and based upon open source tool-
boxes as well as on the authors’ experience in soft
computing software, through the former develop-
ment of FisProa, that offers a high level of seman-
tics and human-machine interaction. It could be
part, as a spatial package, of a wider project like
the GNU Fuzzy one proposed in the 2007 Fuzz’Ieee
Conference8.

The paper organization is as follows. The next
section presents a state of the art of the available
software environments for spatial data. The pro-
posed architecture, including FisPro and the Ge-
oFISb framework, is introduced in Section 3. Sec-
tion 4 presents a soft computing-based distance,
available in FisPro and GeoFIS. The framework
functionalities are illustrated with two real world ap-
plications in Section 5. Finally, Section 6 summa-
rizes the main conclusions and the open challenges.

2. State of the art and need for specialized
software

GIS are powerful systems designed to capture, store,
manipulate, analyze, manage, and display geogra-
phically referenced data. They are used in many ap-
plication areas, archaeology, resource management,
agriculture, etc.

The most popular GIS include commercial soft-
ware such as ArcGIS, JMap, MapInfo, Small-
World, or open source library and software, such as
GeoServer, GRASS, gvSIG, GeoToolsc, OpenMap,
Quantum GIS, Udig or SAGA.

GIS use digital data and a spatio-temporal
(space-time) location as the key index variable for
all information, allowing information from diffe-
rent sources to be related by accurate spatial infor-
mation. They include a vast range of spatial ana-
lysis techniques, among them contour lines, topo-
logical and hydrological modelling, map overlay,
geocoding, geostatistics and classification. In a GIS,
geographical features are often expressed as vectors,
by considering those features as geometrical shapes:
points, lines or polygons. A spatial data set with
a given geometry constitutes a layer. Alternatively,
a layer can also be constituted by a raster data set.
Map overlay uses the combination of several of these
layers to create a new output, visually similar to
stacking several maps of the same region. Elemen-
tary operators are available, such as union, intersec-
tion and symmetric difference.

Geostatistics relies on statistical models based on
random variable theory to produce field estimations
from data points, by modelling the uncertainty asso-
ciated with spatial estimation and simulation. It in-
cludes interpolation methods to complete the input
data collected at a number of sample points.

Despite these powerful tools, GIS lack some
functionalities for modelling and reasoning using
georeferenced data. Geographic information is dis-
played for informing decision making, but there is
neither a clear definition nor handling of some con-
cepts, for instance the zone concept, which is often

ahttp://www7.inra.fr/mia/M/fispro/
bhttps://mulcyber.toulouse.inra.fr/projects/geofis/
chttp://geotools.org/
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confused with the class concept. GIS focus on pro-
viding tools for multi-criteria decision-making, for
instance for site selection and suitability. However
the concept of learning from data is not explicit. To
our knowledge, zone learning, zone operators and
features for dynamic evolution of zones seem not to
be available.

Another notable point is the limited use of soft
computing techniques in GIS, though reasoning
about space often has to deal with some form of un-
certainty or imprecision. Recent add-ons to ArcGIS
include fuzzy operators for map overlay and fuzzy
classification. The concept of a linguistic variable
is used to model the inaccuracies in attributes and
in the geometry of spatial data. Data are fuzzified
through membership functions and overlay opera-
tors are applied on membership values instead of
raw data. An add-on to GRASS provides fuzzy
membership functions, fuzzy operators and fuzzy
rules to implement fuzzy inference systems for clas-
sification tasks.

Fuzzy k-means clustering may be used for min-
ing GIS data. In recent work9 the authors propose
an extended fuzzy k-means method for GIS, that al-
lows cluster centers to be hyperspheres, and apply it
to find fire-point event hotspots from georeferenced
data. Recent publications, for instance10 that uses
a fuzzy GIS-based spatial multi-criteria framework
for irrigated agriculture, take place in the application
fields of Agronomic and Environmental Sciences.

On a different note, several advanced packages
(spatial, geoR, gstat. . . ), are available for the open
source R11 software. They provide multivariate geo-
statistical functions for kriging, analysis and simu-
lation, and often include GIS support (GRASS for
gstat) for querying data and executing scripts. They
are intended for researchers or engineers having a
good background in Statistics. SAGA (System for
Automated Geoscientific Analyses)d offers an open
source comprehensive set of geoscientific methods.

The need for modelling using georeferenced data
is increasing, in many application fields, but particu-
larly so in Life Sciences. The large amount of avai-
lable spatial data has begun to open new avenues of
scientific inquiry into behaviors and patterns of pre-

viously considered unrelated information. However,
the software tools presented above, including GIS
and R, are complex and require lengthy training and
specialised skills to be taken over. This is a limi-
ting factor for the practical use of spatial modelling
in some domains, such as Agronomic and Environ-
mental Sciences where the stakeholders are not spe-
cialists of spatial data. Moreover, the available soft-
ware products lack an easy way to introduce expert
knowledge, and are poor in soft computing tools.

Zadeh proposed the concept of a linguistic
variable12 to implement approximate concepts and
reasoning. A fuzzy partition carries semantics and
knowledge about the variable behavior. Recent
work13 makes it possible to take advantage of the
fuzzy set formalism to add a semi-supervised as-
pect to distance-based statistical procedures such as
clustering. The semi-supervision is done by using
available expert knowledge to superimpose linguis-
tic concepts onto numerical data. This pretreatment
is followed by the design of a pseudo metric based
on the fuzzy partitions corresponding to the con-
cepts. The procedure is thus an approach to combine
numerical data and imperfect data resulting from a
human judgment, and its software implementation
can help to promote soft computing.

New software, designed to facilitate modelling
using expertise as well as georeferenced data, would
be most useful to stakeholders intervening at diffe-
rent levels of decision. Ideally it should provide
some of the basic viewing functionalities of GIS and
interaction with maps. Expertise and data are availa-
ble, and Decision Support Systems (DSS) must inte-
grate them. The software should be easy to use with
a quick and progressive learning, and a friendly in-
terface so that decisions can be made and updated
from map viewing, learning using expert knowledge
and data, and map evolution. The concept of mana-
gement zones, not limited to classes, is required. To
limit the necessary work, the DSS software must be
open, be based on existing GIS components through
available libraries, include elementary geostatistical
techniques through calls to R.

It can then become an open platform for adding
new soft computing developments, adapted to spa-

dhttp://www.saga-gis.org/
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tial data. Targeted users include researchers in mo-
delling tasks, counselors in Agronomic and Environ-
mental Sciences and also teachers in those fields.

3. Proposed architecture

The DSS architecture is shown in Figure 1.
The figure is divided by a dashed line: the

left part includes the components involved in the
GeoFIS design while the right one illustrates how
they are used.

Uncertainty

Georeferenced

Data

Expert knowledge
GeoFIS

DSS

Quantitative evaluation
Performance indices

Open source toolboxes

Geotools:  GIS library

R:  Statistics, geostatistics 

FisPro: Semantics, 1D,
  dynamical behavior

CGAL:  Geometric Library 

Output

Design Use

Qualitative evaluation
Visualisation, interpretation

Decision support

Fig. 1. GeoFIS architecture.

The data under consideration are georeferenced
data. Another characteristic of the data available for
the decision maker, especially in life sciences like
Agronomic and Environmental Sciences, is their un-
certainty. This is due to biological variability but
also to the necessity of using poorly defined con-
cepts, such as flood-risk area.

Expert knowledge is central in decision making.
The DSS should be oriented towards the service of
the decision maker, his/her knowledge being given
the leading part.

In the proposed architecture, various open source
toolboxes and libraries are used for the coopera-
tion between expert knowledge and data. Statis-
tical and geostatistical functions are implemented
in the R projecte and, among the available GIS
libraries, GeoTools is chosen because it includes

all of the necessary concepts and is written in
Java, a good language to design friendly inter-
faces. CGAL (Computational Geometry Algorithms
Library)f provides efficient and reliable geometric
algorithms in the form of a C++ library.

The FisPro environment offers a high level of in-
teraction between expertise and data for designing
and optimizing fuzzy inference systems. It is not de-
signed to handle geographic data, but can be useful
for instance to build composite variables by approxi-
mate reasoning or to design fuzzy partitions in the
attribute space. Available on the Web since 2002,
it is widely used in different fields and for various
purposes (education, research, commercial).

FisPro’s main functionalities, which are detailed
below, inspired the GeoFIS framework. The goal is
to provide the decision maker not only with useful
indices for a quantitative evaluation but with a user-
friendly interface to make a qualitative evaluation of
the whole model. Interactive modelling capabilities
are a must. Specific tools needed for spatial data vi-
sualization, spatial reasoning and to investigate the
spatial system behavior are under development and
introduced in the GeoFIS section.

3.1. FisPro (Fuzzy Inference System Design and
Optimization)

FisPro has a C++ core and a Java interface. It
allows Fuzzy Inference System (FIS) design from
expert knowledge or data. Among the available
fuzzy software toolboxes, FisPro stands out for sys-
tem interpretability, which is a necessary condition
for cooperation between expert knowledge and data.

FIS can be completely, and automatically, de-
signed from data14. In the latter case, semantics is
guaranteed at each step. The necessary conditions
for fuzzy partitions to be interpretable and to im-
plement the linguistic variable concepts have been
studied by several authors15. The main points are
distinguishability, a justifiable number of fuzzy sets,
normalization, sufficient overlapping and coverage.
These conditions are met by so-called strong fuzzy

ehttp://www.R-project.org
fhttp://www.cgal.org/
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partitions (SFPs), such as the one shown in Figure 2.
A SFP described by f membership functions (MFs)
on the universe U fulfills the following condition:

∀x ∈U,
f

∑
i=1

µi(x) = 1 (1)

where µi(x) is the membership degree of x in the ith
MF.

Fig. 2. A strong fuzzy partition (Fispro snapshot).

The rules share the same linguistic terms and
the optimization module does not modify the FIS
structure and semantics are preserved after param-
eter tuning.

FisPro’s efficient approach in exploratory ana-
lysis and system modelling has been used to deal
with agricultural applications3. Special attention has
been put on the dynamical behavior of a FIS fol-
lowing user modifications. Each variable, rule or
data item can be activated/deactivated. The system
parameters (operators, partitions, rule description)
can be edited. All changes are dynamically han-
dled and all current windows are updated, including
the inference result ones. Response surfaces are also
available for an analysis of the system behavior.

To help the user to assess the rule representa-
tiveness, an option that evaluates the links between

rules and examples is available. A detailed cross-
summary is given for each rule, the samples that fire
this rule above a given matching degree, and for each
sample, the rules that are fired.

Inference can be done manually or on the cur-
rent data file, with evaluation criteria that take into
account the numerical accuracy as well as the signif-
icance of data items regarding the FIS.

Fig. 3. FisPro Inference from the data table.

Figure 3 shows two distinct windows. The up-
per one shows the data as a table: a row corresponds
to a data item, a column to a variable. The output
variable is in the last column. A double-click on a
given row opens the inference window with the cor-
responding input values, as shown in the bottom part
of the figure. Each row corresponds to a rule. For
each rule, the four first columns correspond to the
input variables. The fuzzy set is shaded up to the
corresponding membership degree for the given in-
put value. The second input variable is not involved
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in any rule. The last column displays the rule out-
puts. This being a Sugeno FIS, the rule conclusion
is given in parenthesis below the rule matching de-
gree for the current input data. The inferred output
value, which results from rule output aggregation,
appears in the top right corner (5.249). Modifying
any FIS element would update this window.

Fuzzy inference systems are useful for building
composite variables to be used in DSS. Fuzzy parti-
tioning can be used to model uncertainties through
linguistic variables, and an example will be given in
Section 5.

3.2. GeoFIS (Geographic Fuzzy Reasoning)

GeoFIS provides a simple evolutive frame-
work to visualize and analyze spatial data. Based on
open source libraries, it is written in Java and uses
GeoTools to display existing data layers or generate
them from raw text files. It includes calls to R to
provide one-dimensional spatial analysis. It is rel-
atively easy to implement more geostatistical tech-
niques through calls to R spatial packages. GeoFIS
also includes an elementary zone learning module,
written in C++. Add-ons will allow to introduce new
learning methods into the framework, in particular
soft computing ones.

Fig. 4. The GeoFIS main window.

Figure 4 shows an example of a two layer map. The
first layer displays the data points while the second
one corresponds to their Voronoi tessellation. The
Voronoi tessellation for a set of points S in the plane
is a partition of the plane into convex polygons, each
of which consists of all the area in the plane closer
to one particular point of S than to any other.

3.2.1. One-dimensional statistical analysis

All these functionalities are implemented using the
R software11 with the gstatg package. The R func-
tions are used by a large research community and
are well tested. The interface implemented here uses
the Rserverh developments, which allow the direct
transfer of objects between R and Java.

Fig. 5. GeoFIS histogram window.

The histogram window shows the distribution
of data values for the selected variable. The num-
ber of classes and the class bounds can be cus-
tomized. Different choices are possible, including
equally spaced containers, bins with an equal num-
ber of elements, or Sturges16 algorithm for selecting
the best number of classes.

ghttp://www.gstat.org/
hhttp://www.rforge.net/Rserve/
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Given the distribution, data can be automatically
or manually filtered, to define a validity range, for
instance one that holds 95% of the data, or by se-
lecting the bounds, and so remove outliers.

The histogram window and the map viewing one
are dynamically linked, so that the valid and re-
moved data points are plotted in the latter window
in two distinct colors, and updated according to the
user edits in the former one.

In the case of spatial data, it is important to
model the degree of spatial dependence. This is
done using a semi-variogram. In GeoFIS, the var-
iogram window prepares for kriging, i.e. interpola-
tion using a defined model. The variogram model
often needs expert tuning to fit the model taking into
account the data set specificities (spatial resolution,
shape and size of the area under study . . . ). All of
the model parameters can be adjusted and the theo-
retical model (exponential, Gaussian, linear with sill
and spherical), as well as the data fit, are updated
accordingly.

The variogram model can be saved in standard
format (xml) for reuse on new data or exported to
other software.

Fig. 6. GeoFIS variogram window.

3.2.2. Learning module

The zone learning module is based on a segmenta-
tion algorithm, inspired from an image-processing
region merging algorithm. It allows the delineation
of discrete contiguous management zones. Ma-
nagement in agricultural systems is dependent on
both the magnitude of variation and how it is
partitioned17. Segmentation algorithms differ from
classification algorithms in that they are object-
oriented (note: the term object-oriented here is used
in its image analysis context, not a software engi-
neering context). This focus leads to the production
of discrete zones rather than classes and the output
is spatially structured.

Fig. 7. GeoFIS zone learning parameters.
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One of the disadvantages with many object-
oriented segmentation algorithms is a reliance on
regular grid data for determining segment morpho-
logy. This is probably an artefact from their pri-
mary application in image analysis and has re-
stricted the use of these algorithms on irregular agro-
environmental data sets. The zone learning algo-
rithm implemented in GeoFIS is able to process low
or high resolution data, on a regular grid or not. It
is inspired from a region-merging algorithm and all
details can be found in 18. A fundamental point is
the way the spatial coordinates are used here. They
are not involved in any distance calculation, but are
only used to define point and zone neighbourhood.
The algorithm works on two spaces simultaneously
(attribute space and geographic space). The prox-
imity criterion used for zone merging is based on a
distance in the attribute space, and it is only calcu-
lated within a given neighbourhood. Spatial interpo-
lation of data is not necessary for the algorithm to
run. This is an asset, as interpolation generates syn-
thetic data, whose artificial nature is often forgotten
in the interpretation of the results.

Figure 7 shows the main parameters of the zone
learning algorithm. It presently works on a single
dimension in the attribute space, which is referred to
by Attribute column number. Stop criteria include
the number of zones to generate and a zone spatial
heterogeneity based criterion. Intermediate maps
may be required to allow users to see the evolution
of the zone merging process. An auxiliary variable
can be specified to recursively re-run the algorithm
on a zone, using that auxiliary feature to guide the
new zoning.

As for all segmentation or classification meth-
ods, the algorithm is sensitive to the choice of the
distance in the attribute space. Options include the
Euclidean distance, as well as a fuzzy partition based
distance.

3.2.3. Implementation details

GeoFIS currently includes the two previously des-
cribed modules, one-dimensional statistical analysis
and zone learning. Both modules are implemented
into the Java-based interfaced general framework,
and the second one is also available as a stand alone
C++ program. This makes it possible to use it inde-
pendently for computationally intensive automated
learning tasks. GeoFIS is protected by a CeCILL
open source licensei.

The programs are hosted on the collaborative
development environment MULCYBERj, in binary
and source form.

GeoFIS handles various input and output for-
mats: csv files, shapefiles, raster files.

4. Introduction of soft computing

In the present work, soft computing is introduced
using fuzzy partition-based distances in the segmen-
tation algorithm, instead of the classical Euclidean
distance. A fuzzy partition-based distance, also
called FP-based distance, allows the introduction
of expert knowledge in the algorithm19. The FP-
based distance combines numerical and symbolic
elements. Its numerical part allows it to handle mul-
tiple membership in transition zones, while the sym-
bolic one takes into account the granularity of the
concepts associated with the fuzzy sets (see 19 for
details).

The proposal applies to data in the unit interval
U = [0,1] and relies on Fuzzy Partitions (FPs). The
distance is called dP. We only recall here the defi-
nition and some properties. All details can be found
in 13.

4.1. Mono-dimensional FP-based distance

Although the pseudo-metric, dP, is defined for gen-
eral FPs13, it expression becomes quite simple for
Strong Fuzzy Partitions (SFPs), as used in this pa-
per.

Let Si = [Si,Si] the ith MF support, defined by
{x|µi(x)> 0}.

ihttp://www.cecill.info/licences/Licence CeCILL V2-en.html
jhttp://mulcyber.toulouse.inra.fr/projects/geofis/
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Let Ki = [Ki,Ki] the ith MF kernel, defined by
{x|µi(x) = 1}.

Let Xi = [Ki,Ki+1[, for 0 6 i 6 f .
We denote by I(x) the function such that:

∀i ∈ [0, f ],x ∈ Xi⇔ I(x) = i

Let us introduce the function P:

P(x) = I(x)−µI(x)(x) (2)

P is a positive non-decreasing function of x and is
increasing in overlapping zones.

dP(x,y) can then be written as:

dP(x,y) =
|P(y)−P(x)|

f −1
(3)

4.1.1. Rank inversion vs Euclidean distance

Figure 8 shows an example of rank inversion of the
fuzzy partition based distance results compared with
the Euclidean distance ones. With the univariate
fuzzy partition-based distance dP, y and z are further
apart than x and y, while they would be closer than x
and y, were the Euclidean distance used. This rank
inversion is due to the fact that all elements within a
given fuzzy set kernel have a null distance.

0

x y z

10.6 0.70.4

PPd  (x,y)=0.067 d  (y,z)=0.133

Fig. 8. Example of FP-based distance (dP) behavior.

4.1.2. Particular case of regular SFPs

A regular SFP is composed of triangular member-
ship functions, with equidistributed kernel centers
K1 . . .K f , with Ki = Si−1 = Si+1.

For this particular case, it was shown in 13 that
the proposed pseudo-metric is a metric and that it

yields the same result as the Euclidean distance, re-
gardless of the number of terms in the partition. The
reason is that the distance proposed in Eq. (3) dis-
torts the Euclidean distance according to the two fol-
lowing points: the symbolic distance between con-
cepts and the indistinguishability of the kernel ele-
ments. In the case of a regular SFP, these two cha-
racteristics disappear because all kernels are reduced
to single points and are equidistant.

4.2. Multi-dimensional FP-based distance

A simple and efficient way to obtain a multidimen-
sional pseudo-metric is to perform a Minkowski-like
combination of the univariate pseudo-metrics. Let
two multidimensional points x = (x1, . . . ,xM) and
y = (y1, . . . ,yM) with xi,yi ∈ [0,1], ∀i ∈ 1, . . . ,M.

We have the following definition for the multi-
dimensional distance, which is also a pseudo-metric:

∀x,y d(x,y) =

[
M

∑
j=1

(d j(x j,y j))
k

] 1
k

(4)

where k is a scalar positive value, corresponding to
the Minkowski exponent. The advantage of this def-
inition is that one can use different sub-distances in
the various dimensions, for instance a FP-based dis-
tance in dimension a if expert knowledge is available
for the corresponding feature, and on the contrary,
the Euclidean one in dimension b.

5. Case studies

This section presents two real world agronomic ap-
plications involving spatial data and expert know-
ledge. The first one is monodimensional, and the
second one is bidimensional.

5.1. Defining management zones in a wine
growing application

The georeferenced data are yield data20, coming
from an embedded sensor on a grape-harvesting
machine. The 1.4 ha field is planted with the
Bourboulenc variety and was harvested in 2001 in
Provence (France). The average sampling rate is
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about 2400 measurements per ha. But, due to a data
acquisition problem, some records are missing.

The objective of the study is to find suitable ma-
nagement zones from the information found in the
yield data and the domain knowledge. Several oper-
ations could then be adapted including, for example,
fertilization, winter pruning and inter row manage-
ment. In this case, the grower was considering the
establishment of grass in the rows located in zones
of high production to introduce a competition with
the vines and reduce their vigour and the resulting
yield.

Let us discuss the different modelling steps made
possible by the software framework.

5.1.1. Viewing the spatial distribution

The first stage is to view the spatial distribution of
the yield attribute, by splitting it into classes, and
projecting it into a two dimensional map. Various
methods can be used: expert definition of classes
or automatic definition from data. We present here
three different choices for clustering in the attribute
space: a) crisp clustering using expert boundaries,
b) automatic k-means with three groups and c) clus-
tering into three equi populated groups. Figures 9,
10 and 11 show the respective clustered maps.

Fig. 9. Clustering vine data - three expert groups.

Fig. 10. Clustering vine data - three K-means clusters.
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Fig. 11. Clustering vine data - three equipopulated groups.

All three maps are derived from interpolated
data. Interpolation is used to represent a continu-
ous map, so even if the sampling is irregular and/or
there are gaps in the data (see Figure 9), it is possible
to visualize the main spatial patterns of the field.

Each of the different types of maps is important
for operational data analysis.

The map displayed on Figure 9 provides expert
classes. It displays the response of the field in rela-
tion to the technical goals of the grower. The central
class corresponds to the yield target, the lower and
upper classes are the yields for which the vineyard
operations (pruning, fertilization, etc.) are probably
not appropriate. Figure 9 shows a northern zone that
matches the yield goal and a southern zone for which
the vine management does not seem appropriate be-
cause the yield is too high.

Other representations are necessary for opera-
tional purposes. The k-means classification (Figure
10) helps to identify whether there is a particular dis-
tribution of data in the plot. Equiprobable classifica-
tion (Figure 11) allows to visualize the data variabil-
ity, showing for example that the northern zone con-

sists of medium and very low yields. This map may
be useful to highlight the effects of environmental
factors (soil, elevation, etc..) which explain the ob-
served spatial variability. In all examples, regardless
of the classification methods used, the maps show
discontinuous spatial patterns. Although classifica-
tion is interesting for analysis purposes, the resulting
maps can hardly be taken into account to propose
site-specific management of the field.

5.1.2. Zoning with a Euclidean distance

Fig. 12. Zoning vine data using the Euclidean distance.

The second stage consists in a spatial zoning of
the yield data, using a Euclidean distance in the at-
tribute space. The merging algorithm mentioned in
Section 3.2 is used. It yields a series of maps with
a decreasing number of zones. The six zone map
is presented in Figure 12, that highlights the useful-
ness of zoning. It shows zones where site-specific
management may be considered. However, from a
practical point of view, that map remains difficult to
use.
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This zoning method yields zones with complex
borders and does not allow a simple view of the field.

5.1.3. Zoning with a FP-based distance

The third stage improves the spatial zoning of
the yield data by incorporating expert know-
ledge through a fuzzy partition-based distance (see
Section 3.2). The fuzzy set breakpoints are 7,9,11,
which are related to the choice made previously for
the crisp classification. A FisPro snapshot is shown
in Figure 13, that displays the fuzzy partition to-
gether with the data distribution.

Fig. 13. Histogram and fuzzy partition for vine data.

The six zone map obtained by running the zo-
ning algorithm, guided by the fuzzy partition based
distance, is shown in Figure 14.

The introduction of fuzzy logic in the zoning
method provides a map that simplifies the represen-
tation of the field. Two main management zones are
highlighted, one corresponding to the northern low
yield area, the other one to the southern high yield
area. Note that a few specific zones of small size
are also identified. They correspond to i) a zone of
very high yield in the center of the plot and ii) two
low yield zones located along the southern edge of

the field which are due to border effects (beginning
of the rows). Depending on the goal and the ma-
chinery of the grower, these small zones may not
be considered sensible for site-specific management.

Fig. 14. Zoning vine data using a FP-based distance.

5.2. Bivariate study of yield-protein interaction
in cereal production

The interaction between yield and protein is key to
understanding yield potential and Nitrogen (N) bud-
gets in cereal production systems. With on-harvester
cereal yield and protein sensors now commercially
available it is possible to acquire high-density yield
and protein information. However, the application
of agronomic decisions with co-joined yield and
protein data has not been well examined to date, in
part because effective measures of interrogating the
data for decision-making have not been proposed.

Here we propose a two-step process using an
adapted version of the univariate zoning algorithm
presented in Section 3.2.2. The alternative would be
to use a bidimensional distance, see Eq. (4). The
advantage of the solution proposed here is the in-
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terpretability of the zoning results for the decision
makers.

The yield and protein data were collected in 2004
from a 80 ha field in north-west NSW, Australia, us-
ing on-harvesters sensors connected to a DGPS unit
on a commercial grain combine harvester. The data
were trimmed of outliers. The two data sets were at
different spatial resolutions; the protein data was at
a density of 65 points/ha while the yield data was at
725 points/ha.”

5.2.1. FP-based bivariate segmentation

The two-step process is as follows:

1. The trimmed (uninterpolated) yield and pro-
tein data were independently run through the
zoning algorithm to give two independent re-
sults (y yield and p protein zones). The
membership functions used in the process are
shown in Figure 15 and 16, together with the
data distribution. The Protein MFs are based
on the general rules for hard bread wheat21.

Zones are restricted to a minimum size, which
for yield was set at 350 points and for protein
at 30 points. Both equate to approximately 0.5
ha. Multiple outputs [5,10,15] are generated
for each univariate analysis (p/y).

2. The two results (y-zones and p-zones) from
the segmentation were intersected to make
a polygon layer of z segmentation-derived
Yield-Protein zones.

All possible combinations of the derived p-zones
and y-zones were considered. The zoning was la-
beled as p05y05 for the intersection of the 5-zone
protein and 5-zone yield maps; p05y10 for 5-zone
protein and 10-zone yield maps etc.

Fig. 15. Histogram and fuzzy partition for cereal protein.

Fig. 16. Histogram and fuzzy partition for cereal yield.
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5.2.2. Data clean up and results

In the segmentation approach, the univariate seg-
mentation is constrained to ensure that the y yield
zones and the p protein zones are large enough to be
managed, as explained in the previous case study.

However, when these are intersected to produce
Yield-Protein zones, some of the zones may be too
small to be managed. Therefore the Yield-Protein
zone maps need to be cleaned to produce a map
that is suitable for agronomic use (and decision-
making). Polygons that were less than a desired
threshold (in this example 0.5 ha) were identified
and removed, creating a clean polygon map that con-
tains holes. The 5-m field grid (that was used for the
interpolation) was intersected with the cleaned poly-
gon maps. Grid points located outside a polygon
were re-associated with the nearest polygon using a
nearest neighbor interpolation. Grid points located
inside a polygon retain the polygon features. The
grid data was then transformed into a final polygon
map, which is now a continuous surface.

Fig. 17. Map of the cleaned 43-zone segmentation results
(cereal yield-protein interaction).

5.3. Perspectives

These two case studies show the interest of incor-
porating expert knowledge into zoning algorithms
to guide the zoning and generate more interpretable
maps. This is important for decision making in
many application fields. Even when dealing with
multidimensional cases, the expert knowledge often
remains monodimensional, as interactions are com-
plex and difficult to grasp. Therefore, the FP-based
distance is a useful tool that must be associated with
aggregation operators. These operators should use
soft computing to relax constraints on zone deli-
neation and allow more flexibility in the aggregation
process, while preserving the result interpretability.

6. Conclusion

Cooperation between knowledge and data is still
an open challenge in system modelling. Among
soft computing methods, fuzzy logic provides ori-
ginal efficient solutions. Its success stems from the
ability to express the system behavior in a linguis-
tic, highly interpretable way. An emerging ambi-
tious challenge is the development of methods and
software suitable for cooperation between domain
knowledge and georeferenced data, also called spa-
tial data, which are now becoming available in great
quantities.

In this paper, we proposed an open source frame-
work, based on specialized toolboxes and software,
to be used for modelling and decision support. It
also aims to answer some educational needs of stu-
dents in these application domains, including ad-
vanced programs for developing countries where the
use of open source software is an asset. We intro-
duced a soft computing tool allowing the users to de-
fine distances based on expert knowledge by means
of fuzzy partitions and to incorporate them in a seg-
mentation algorithm.

The software functionalities are illustrated on
two case studies in Agronomy, that show how they
can help practitioners.

This is only a first step. For instance, it is neces-
sary to develop specific visualization tools, in order
to represent a fuzzy zone, with uncertainties in two
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different spaces, the geographical space and the at-
tribute space.

The interpretability constraints which have been
implemented in fuzzy software for ordinary data,
such as FisPro, are not so easy to define for geo-
referenced data. There is no trivial extension of
strong fuzzy partitions to a two-dimensional space.
The development of approximate map comparison
techniques and suitable aggregation operators, in or-
der to monitor the temporal evolution of zones on
a map, or to compare maps for different attributes,
constitutes another topic of interest. Image analysis
techniques have to be extended to include irregularly
spaced data, coming from manual measurements,
and domain knowledge.

Applying fuzzy logic tools, or more generally
soft computing tools, to spatial data is an attrac-
tive perspective that opens new research topics, both
methodological and software related.
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